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Abstract. For a superstring theory in four spacetime dimensions, we propose a modification of the Born–
Infeld action that possesses a well-defined tensionless limit. We interpret this as describing the effective
target space dynamics of null strings on a D3-brane. We argue that such a modification can be induced by
nonperturbative contributions from instantons in the worldsheet σ-model describing string propagation on
the brane.

In this paper, we consider an Abelian Born–Infeld the-
ory of four-dimensional superstrings on spacetime-filling
D3-branes. We demonstrate that the usual Born–Infeld ac-
tion has a consistent modification that possesses a well-
defined null string (i.e., tensionless) limit, for appropriate
brane worldvolumes. The suggested form of the modified
action is analogous to an earlier proposal [1] for modify-
ing Born–Infeld electromagnetism to permit a consistent
Galilean (c→∞) limit. In the present, fully relativistic
context, we argue that such a modification may be in-
duced by nonperturbative effects on the null string world-
sheet, in the form of worldsheet instantons. Our analysis
provides an independent indication that nonperturbative
worldsheet effects must be included in order to give a target
space interpretation to σ-models for null strings propagat-
ing in gauge backgrounds. We also discuss how our results
can be extended to non-Abelian Born–Infeld theory de-
scribing the target space dynamics of coincident multiple
D-branes.
Study of the tensionless limit of strings and p-branes

spans three decades. The original concept of the null string
is due to Schild [2], who gave a classical worldsheet action
in the limit where the Regge slope α′ of the string becomes
infinite. Subsequently it was found that upon quantising
the null string worldsheet field theory, there appears to be
no critical dimension of spacetime [3–8], and that this re-
sult is consistent with conformal invariance. However, the
conclusion is still a matter of debate [9]. It has been pointed
out that the issue depends crucially on the way in which
one quantises the theory [10]. Physically, the results can be
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interpreted as follows. The specific operator ordering for
p = 1 is associated with viewing the null string as a col-
lection of particles moving under certain conditions, where
the absence of a critical dimension is expected on physical
grounds. But if one ignores the particle interpretation, and
restricts attention only to the appropriate tensionless limit
of the conformal anomaly, then nontrivial central charge
terms appear – leading, in that case, to a critical dimen-
sion. However, it has been argued even here that the limit
in which the string tension T → 0 can be taken in a way
that leads to a null string conformal algebra with a vanish-
ing critical dimension [11, 12]. These ambiguities all can be
traced back to operator orderings. By carrying out BRST
quantisation for a model of p-branes with second class con-
straints, it was shown in [10] that for p > 1, the operator
orderings which induce the critical dimension in the p= 1
case are forbidden, and thus impose no restriction on the
dimensionality of the target space.
The zero-tension limit of strings and D-branes at-

tracted renewed attention in [13–18], for both physical and
mathematical reasons. New worldsheet actions and consis-
tent quantisation schemes have been proposed for tension-
less strings [19–22]. They have been argued to be instru-
mental in a variety of applications such as the AdS/CFT
correspondence [23–26] and the twistor string formulation
of supersymmetric Yang–Mills theory [27, 28]. The tension-
less limit of gauged, non-compact Wess–Zumino–Witten
(WZW) models, which arises when the level k of the un-
derlying Kac–Moody algebra with a formally divergent
central charge assumes a critical value (equal to the dual
Coxeter number of the gauge group), has been analysed
in [29–31]. One finds that the central charge of all higher
spin generators is fixed to a critical value which is not seen
by the usual Virasoro symmetry. From a physical point of
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view, such limiting cases of WZW models might describe
a topological phase of high energy quantum chromody-
namics [32]. While the results of [30, 31] do not seem to
support this idea, it was pointed out in [32] that nonpertur-
bative worldsheet configurations – such as instantons [33–
35] – play a crucial role in consistently yielding the above
limit, as well as in the breaking of the topological sym-
metry. Such configurations were ignored in [30, 31], which
might account for the authors’ unexpected results con-
cerning the decoupling of worldsheet gravity (the Liouville
mode).
Here we study the tensionless limit of strings and

p-branes from an alternative (but equally problematic)
point of view to the worldsheet and worldvolume perspec-
tives described above – that of the target space dynamics of
background gauge fields in which open strings propagate.
It is well known that for oriented open strings of coupling
gs� 1, and finite tension

T :=
1

2πα′
�= 0 , (1)

propagating in weak Abelian gauge field backgrounds, the
bosonic part of the low-energy effective target space dy-
namics is described by the Born–Infeld action [36–39],

S
(p+1)
BI =

T (p+1)/2

gs

∫
dp+1X

√
−detp+1 (Gµν +T−1Fµν) ,

(2)

where the inverse power of the string coupling indicates
that this term arises from the lowest order disk diagram
in open string perturbation theory. The gauge fields Aµ,
µ = 0, 1, . . . , p, with field strength Fµν , are assumed to be
living on the longitudinal p+1 directions of a Dp-brane,
which from a worldsheet perspective are characterised by
σ-model fields Xµ with Neumann boundary conditions at
the boundary of the worldsheet disk. We allow for gravi-
tational backgrounds, so that Gµν is an arbitrary metric
on the brane, but we set the axion, dilaton and B-field
to zero for simplicity. If there is a critical target space
dimension d∗, then the remaining d∗−p−1 string embed-
ding fields Xi have fixed Dirichlet boundary conditions. If
there is no critical dimension, then one may consider four-
dimensional superstrings on spacetime-filling D3-branes.
This is the case to which, for definiteness, we now restrict
ourselves. For the remainder of this paper, we also set the
string coupling gs = 1.
Now four-dimensional Abelian Born–Infeld actions are

particularly easy to manipulate, as they can be expressed
in terms of two geometrical invariants [38] corresponding
to the Yang–Mills and instanton densities. These may be
written

I1 =
1

2
GµλGνρFµνFλρ , I2 =−

1

4
εµνλρFµνFλρ . (3)

Using the identity

det4
(
Gµν +T

−1Fµν
)
= det(G)

(
1+T−2I1−T

−4I22
)
,

(4)

which is particular to the case of four spacetime dimen-
sions, we can express the Born–Infeld action (2) in the form

S
(4)
BI =

∫
d4X
√
− det(G)R , (5)

where

R=
√
T 4+T 2I1− I22 . (6)

Note that with our choice of units, the string tension T
is playing the role of the critical Born–Infeld electric field
strength; i.e., the maximum electric field intensity that
can be accommodated by a real-valued Born–Infeld La-
grangian (6). In the tensionless limit α′→∞, the Abelian
Born–Infeld action (5) becomes imaginary, and is thus un-
defined. This instability reflects the physical fact that in
this limit, there is no string tension to hold the strings to-
gether in any background electric field [39].
There is an analogy between this situation and the

situation discussed in [1], where the Galilean limit c→∞
of Born–Infeld theory was considered. In that limit, the
standard Born–Infeld action vanishes. This prompted the
authors of [1] to propose an example of how to modify
the Born–Infeld action, so as to obtain a nontrivial ac-
tion and nontrivial, nonlinear constitutive equations for
electromagnetism (or, analogously, for Yang–Mills theory)
in the Galilean limit. Of course, for strings there is no
Galilean limit per se; but one can nevertheless follow the
procedure in [1] of introducing terms that result in a well-
defined Born–Infeld action in the null string limit. Thus
motivated, we propose the analogous modification of the
Abelian Born–Infeld Lagrangian (6), given by

R′ =
√
(T 4+λ42)+ (T

2+λ21) I1− I
2
2 , (7)

where λ1, λ2 are appropriate dimensionful constants, de-
pendent on α′, but taking finite values λ̂1, λ̂2 respectively
in the limit α′ →∞. We describe their form and origin
in more detail below. Notice that we have modified the
constant term inside the square root of the Born–Infeld
Lagrangian, which otherwise tends to zero in the α′→∞
limit. In that limit, the modified Born–Infeld action is now
given by,

R′∞ := lim
α′→∞

R′ =
√
λ̂42+ λ̂

2
1I1− I

2
2 . (8)

The constitutive equations,

Gµν :=−
1

2

∂R

∂Fµν
=−GµλGνρFλρ

∂R

∂I1
−
1

4
εµνλρFλρ

∂R

∂I2
,

(9)

lead to the nonlinear electromagnetic equations of mo-
tion∇µGµν = 0, and they have well-defined nonzero limits
given by

∂R′∞
∂I1

=
λ̂21
2R′∞

,
∂R′∞
∂I2

=−
I2

R′∞
. (10)
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Notice that the invariant structure of the modified La-
grangian is identical to that of the original one, and it
thus possesses the same worldvolume symmetries. Requir-
ing positivity of the argument of the square root in (8)
imposes restrictions on the relative strengths of the vari-
ous terms. For relatively weak background gauge fields, the
Born–Infeld Lagrangian is real and defined; hence the mod-
ification (7)–(8) is the analog of the Galilean limit modifi-
cation of the standard Born–Infeld action of [1]. This pro-
cedure is somewhat reminiscent of the approach of [40, 41],
which shows how to obtain a well-defined Born–Infeld ac-
tion in the limit where the brane tension vanishes. The
modification in this case is interpreted physically as the
splitting of the D-brane worldvolume into a collection of
tensile strings.
Next we relate this target space modification of the

Born–Infeld action to the worldsheet dynamics of the null
string. The form of the parameters λj can be constrained
by the requirement that they do not affect perturbative
string scattering amplitudes. The latter are expressed as
series in powers of

√
α′p, where p is a characteristic mo-

mentum scale of the low-energy string excitations. This
implies that the λj , as functions of T , should vanish faster
than the inverse of any polynomial in T as T →∞; i.e.,
λj approaches 0 faster than any power of the worldsheet
σ-model coupling constant

√
α′ approaches 0, so that the

perturbation expansion remains intact to all orders. For ex-
ample, the functional dependence of the λj on T may take
the form

λj = λ̂j e
−T/λ̂j . (11)

Then we may also propose that (11) holds in the non-
perturbative regime α′→∞. The issue now is how such
1/α′ corrections can arise at the level of the worldsheet
theory. We argue that they do so through worldsheet in-
stantons [42, 43], which are already known [32–35] to play
a role in the tensionless limit of strings represented by two-
dimensional σ-models.
In fact, the worldsheet σ-model action describing open

string dynamics on the D3-brane is given by

Sσ[X] =
T

2

∫
d2zGii(∂X

i∂Xi+∂Xi∂Xi)

+

∮
dτAµ∂τX

µ . (12)

Here the worldsheet is a disk, whose bulk can be regarded
as a sphere CP1 ∼= C∪{∞}, with local complex coordi-
nates z, z; and whose boundary is a circle S1 with coor-
dinate τ . We have assumed that the brane worldvolume
is a Kähler manifold, with Euclidean complex coordinates
Xi, Xi, i= 1, 2, in order to ensure formal convergence of
the σ-model path integral

Z =

∫
DXe−Sσ[X] , (13)

where the integration is over string maps from the disk
to the four-dimensional target space. (Analytic continua-
tion to Minkowski time should be done at the end.) Since

the D-brane in this instance carries a spinc structure, the
global Freed–Witten anomalies cancel in (13) [44]. The
metric Gii(X) associated with the image X of a spherical
worldsheet is expressed in terms of the Kähler potential
K(X) as

Gii(X) = ∂i∂iK(X) . (14)

To ensure conformal invariance, we further require that
the spacetime metric Gii be Ricci flat. Then there are
no harmonic (0, 2) or (2, 0) forms. The Kähler form ωii =
−ωii = iGii is a harmonic (1, 1) form with respect to the
metric G.
In the traditional analysis the null string amplitudes

vanish, because in an effective action approach they ap-
pear as expansion terms of the form (α′)n〈Vi1 · · ·Vin〉,
where the Vik are appropriate vertex operators, and where
the amplitude is of the order ∂2n in a derivative expan-
sion. Thus when α′→∞, one has 〈Vi1 · · ·Vin〉 → 0, and
all local correlation functions are trivial. This means that
the worldsheet field theory defined by (12)–(13) becomes
essentially a two-dimensional topological σ-model. This
topological field theory localises onto its instanton sectors.
The instantons are holomorphic functions of the world-
sheet coordinates,

∂Xi

∂z
= 0 , (15)

which implies that only one of the two terms in the bulk
action of (12) will contribute. The path integral (13) then
reduces to an integral over the finite dimensional instanton
moduli space. The worldsheet zero mode integration yields
the Born–Infeld action, while the integration over nontriv-
ial instanton sectors will contribute the above nonpertur-
bative e−1/α

′
corrections to the null string amplitudes to

all orders. These open string instantons can be described
as holomorphic maps from CP1 to the brane worldvolume
(i.e. as holomorphic curves of genus zero with possible self-
intersections), with fixed monodromies around nontrivial
one-cycles in the spacetime prescribed by the gauge field
backgroundAµ.
For a holomorphic instanton Xn wrapping n times

around a single embedded CP1, the bulk contribution to
the action is

Sn := Sσ[Xn] = nT , (16)

while the contribution to the path integral from winding
the disk boundary w times around a single embedded S1

isWw, whereW is the Wilson line associated to the back-
ground Aµ. As these latter contributions have no effect on
the α′→∞ limit of the theory, we henceforth focus on only
the bulk contributions. As we now demonstrate, the pres-
ence of these instantons cures the instability of ordinary
Born–Infeld theory in the null string limit. At the quan-
tum level, they act to suppress the spontaneous creation of
charged null open strings from the vacuum [39, 45].
To illustrate, we describe explicitly the case where the

four-dimensional background spacetime is the complex
projective plane CP2. The qualitative results which follow,
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however, hold for any Ricci-flat Kähler four-manifold with
second Betti number b2 = 1 and can be generalised easily
to the cases of multiple two-cycles by considering each type
of instanton in turn. In this case, the background geometry
(14) is provided by the Fubini–Study metric, which can be
computed from the Kähler potential

K(X) = log(1+XiXi) . (17)

The construction of worldsheet instantons Xn : CP
1 →

CP2 proceeds as follows [46, 47]. Any such holomorphic
map may be defined by setting

Xn(z) = [p0(z), p1(z), p2(z)] , (18)

where z ∈ C, the triple [u0, u1, u2] denotes homogeneous
coordinates on CP2, and the pj are polynomials with no
common zeroes. Then the topological degree of Xn is the
integer

d= max
j=0,1,2

{deg pj(z)} , (19)

so that n = n(d, r) := d− r− 2 by the Riemann–Hurwitz
theorem, where r is the total ramification index of Xn
with 0 ≤ r ≤ 3

2d− 3. The canonical example of such an
instanton is provided by the holomorphic map Xn(z) =
[1, (z+1)d−r+1, zd].
The localisation of the σ-model partition function (13)

in the tensionless limit T → 0 onto an integral over the
finite dimensional instanton moduli space is in this case
given by

Z∞ := lim
α′→∞

Z =
∑
d∈Z

3
2 |d|−3∑
r=0

∫
Md,r

dµ(m)e−Sn(|d|,r) ,

(20)

where Md,r is the stratified moduli space of holomor-
phic maps CP1→ CP2 of degree d and ramification in-
dex r, and the moduli m can be determined from the in-
dependent polynomial coefficients in (18). Md,r is natu-
rally a connected complex manifold of complex dimension
3d− r+2 [46, 47]. Unfortunately, beyond these facts the
geometry of these moduli spaces is not generally known
(see [46, 47] for some low degree examples), and so it is not
possible to further specify the moduli space integration in
(20). Therefore, in the following we will work in a fixed
instanton background , and drop the integral over moduli
in (20). This is like a dilute instanton-gas approximation,
where interactions between instantons are ignored. It will
turn out to be the correct prescription for obtaining the
string version of the α′→∞ limit discussed in the context
of the Lagrangian (8).
We denote by 〈〈O(X)〉〉 :=

∫
DX ′e−Sσ[X

′]O(X)/∫
dX0e

−Sσ [X0] the average of any operator O(X) in the
σ-model over the non-zero modes X ′ with respect to the
instanton action (12), normalised by the zero-instanton
partition function. Ideally, we would like to calculate the
average 〈〈R〉〉 of the Born–Infeld operator (6) in a fixed
gauge field background, but in general an expansion of the

square root in unmanageable. Instead we work in the fixed
instanton background just discussed and calculate

〈〈R2〉〉= T 4〈〈1〉〉+T 2〈〈Gµλ(X)Gνρ(X)〉〉FµνFλρ− I
2
2 .
(21)

Note that the expectation value of the topological invari-
ant I22 is trivial, because it does not depend on the back-
ground geometry. Each average in (21) induces a sum over
terms e−nT with the appropriate nonperturbative struc-
tures. In the limit T → 0, only instantons of very large
degree n→∞ will contribute, yielding the desired modifi-
cation (8) of the Born–Infeld Lagrangian.
In the fixed instanton background, one may replace

the averages in (21) by quantum mechanical expecta-
tion values with respect to a state |ψn〉 corresponding to
a specific instanton number n ∈ Z; i.e., 〈〈O〉〉 := 〈ψn|O|ψn〉.
Here n < 0 correspond to the contributions from anti-
holomorphic maps, and in the generalisation to spaces
with second Betti number b2 > 1, n would label an in-
teger b2-vector representing multiple instanton contribu-
tions. These states define a complete orthonormal system
of vectors in the quantum Hilbert space of the σ-model,
〈ψn|ψm〉 = δnm, which decomposes the Hilbert space
into superselection sectors. One has X|ψn〉 = Xn|ψn〉,
whereXn denotes the specified instanton background such
as (18). Inserting the sum over such a complete set of states
into (21), the off-diagonal matrix elements of R vanish as
they correspond to instanton modes belonging to distinct
superselection sectors, and we obtain

〈
ψn|R

2|ψn
〉
=
∑
m∈Z

〈ψn|R|ψm〉〈ψm|R|ψn〉= 〈ψn|R|ψn〉
2 .

(22)

We may therefore write the instanton-averaged Born–
Infeld Lagrangian in closed form, as

〈〈R〉〉 =
√
T 4〈〈1〉〉+T 2〈〈Gµλ(X)Gνρ(X)〉〉FµνFλρ− I22 .

(23)

This leads to the identification of the parameters λj in (8)
with expressions taking the form of (11).
It should be stressed, however, that (11) is merely the

simplest form that consistent nonperturbative expressions
in α′ might take, and that a more precise calculation of the
above instanton contributions (including the moduli space
integrations) should be expected to lead to more compli-
cated functions. It would be interesting to carry out an
analysis in this context along the lines of [42, 43], who show
that worldsheet instanton contributions to tree-level tar-
get space scattering amplitudes renormalise the spacetime
superpotential and can destabilise vacuum configurations
by inducing tadpole graphs for massless particles. Never-
theless, it is encouraging that the rough computation of
worldsheet instanton effects outlined above leads to this
form.
We conclude by indicating briefly how our analysis can

be generalised to non-Abelian Born–Infeld theory. For non-
Abelian gauge fields, the action (2) is modified by including
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a symmetrised trace operation (over the group indices), de-
noted STr, acting on the square root [38]. One still has
formally the four-dimensional determinant identity (4) for
non-Abelian field strengths. But the resulting Lagrangian
is no longer expressed in terms of just two geometrical in-
variants, because STr(R) includes all possible orderings of
the Fµν factors. The formal way to proceed is first to ex-
pand the Abelian Born–Infeld Lagrangian (6) in (even)
powers of F to define spacetime tensors Cµ1ν1···µ2kν2k ,
through the formula

R=
∞∑
k=1

Cµ1ν1···µ2kν2k Fµ1ν1 · · ·Fµ2kν2k . (24)

Writing Fµν = F
a
µνTa with Ta the orthonormal generators

of the gauge group in the fundamental representation, the
non-Abelian Born–Infeld Lagrangian is then given by

STr(R) =
∞∑
k=1

da1···a2kC
µ1ν1···µ2kν2kF a1µ1ν1 · · ·F

a2k
µ2kν2k

,

(25)

where the totally symmetric tensors da1···al :=
STr(Ta1 · · ·Tal) are the invariant tensors for the adjoint
action of the corresponding Lie algebra.
For the gauge group SU(2), one can explicitly sum the

series (25) [38]. In this case the generators satisfy TaTb =
δab+ iεabcTc, so da1···a2k = 2δ{a1a2 · · · δa2k−1a2k}. The sim-
ple structure of the invariant tensors enables one to write
the SU(2) Lagrangian in terms of three geometric invari-
ants, TrI1, (TrI2)

2, and TrI22 , as

STr(RSU(2)) =

√
T 4+T 2TrI1−

1

3

(
(TrI2)2+2TrI22

)
.

(26)

In the Abelian case the latter two invariants in (26) coin-
cide, and the Lagrangian reduces to (6). Again in direct
analogy with the development in [1], we have in place of (7)
the modification of the non-Abelian Born–Infeld action
given by

STr(R′SU(2))

=

√
(T 4+λ42)+ (T

2+λ21)TrI1−
1

3

(
(TrI2)2+2TrI22

)
,

(27)

which has a well-defined null string limit with the same ge-
ometric invariant structure. In particular, the non-Abelian
constitutive equations,

Gµνa :=−
1

2

∂STr(R)

∂F aµν
, (28)

and the resulting equations of motion again have well-
defined limits as α′ →∞. It is clear in this case that
precisely the same worldsheet instanton mechanism as for
the Abelian case gives rise to the nonperturbative par-
ameters λj in the modified Lagrangian (27). It would

be interesting to extend this analysis to higher rank
gauge groups. In general there are only partial results
describing the invariant tensors da1···a2k , and the La-
grangians will generically be functions of many more geo-
metric invariants. It would also be interesting to generalise
the above results to higher dimensional manifolds, de-
scribing string propagation in general Dp-branes. In [48,
49] it is shown how Dirac–Born–Infeld Lagrangians can
be written as square roots of quadratic forms in any
dimension.
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